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1.  Introduction

Stem cells (SCs) are undifferentiated cells capable of 
self-renewal and differentiation into multiple func-
tional cell types. These cells are widely used in injury 
repair and tissue regeneration.1,2 Adult SCs have been 
isolated from a variety of tissues including bone mar-
row, brain, liver, lungs, breast, skin, skeletal muscles, 
hair follicles and teeth.3,4 Dental-derived SCs have been 
isolated and identified as the cell sources for tooth re-
pair and regeneration. These cells are named according 
to their anatomical locations, and are characterized  
by their SC markers, colony-forming ability, and dental 
regenerative function.

Current research indicates that dental SCs may have 
the potential to regenerate bone, the periodontal liga-
ment (PDL), and possibly teeth. Thus, appropriate cryo-
preservation of these dental cells, tissues and teeth are 
imperative to realize the opportunities of these SCs for 
medical applications, particularly for autotransplanta-
tion.5 However, the optimal methods for tissue cryo-
preservation remain largely unknown. Masato et al 
described long-term tooth cryopreservation using a 
programmed freezer with a magnetic field, the so-
called Cell Alive System (CAS).6 Using the CAS method, 
the PDL showed good cell viability and differentiation 
capability after cryopreservation.6 In support of this, 
further experiments by Temmerman et al demonstrated 
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the successful cryopreservation of human pulpal tis-
sues, when the cryoprotectant encompassed the en-
tire pulp.7 Thus, by using appropriate cryopreservation 
processes, tooth storage and banking will provide sig-
nificant contributions to clinical autotransplantation.6,7

Remarkable progress has recently been made in SC 
biology and tissue engineering. Tooth tissue engineer-
ing involves the use of in vitro expanded cells in combi-
nation with supporting biocompatible materials in an 
appropriate environment. Traditionally, tooth-like struc-
tures produced from biodegradable polymer scaffolds 
were seeded with dissociated tooth germ, usually from 
postnatal pigs or cultured rat tooth bud cells, and then 
grown in the omentum of immunocompromised mice.8 
Recent advances have uncovered the potential for tooth 
tissue regeneration using SCs and a scaffold/extracellular 
matrix.

2.  Dental-derived SCs

Dental SCs have been found in several tissues and can be 
divided into dental mesenchymal SCs (MSCs) and den-
tal epithelial SCs (Figure 1 and Table 1).4,9–23 MSCs from 
human dental tissues include dental pulp SCs (DPSCs) 
in human permanent teeth,4,9,10 SCs from human exfo-
liated deciduous teeth (SHEDs),11 periodontal ligament 
SCs (PDLSCs),24 and dental follicle SCs (DFSCs) from 
human third molars.25,26 Dental epithelial SCs have also 
been found in continuously growing incisors in mice 
and in molars from various mammalian species.20,21

2.1.  DPSCs and SHEDs

DPSCs are SCs derived from dental pulp (Figure 1). 
These cells are quiescent and reside in a specific perivascu-
lar microenvironment where they maintain their SC char-
acteristics. DPSCs show a multipotential differentiation 
ability, which is similar to that of MSCs[REFERENCE?]. 
These DPSCs express MSC markers, including Stro-1 and 
CD146, and undergo colony forming in vitro and can re-
generate the dentin/pulp complex in vivo[REFERENCE?].

SHEDs are multiple SCs found in the pulp tissue of 
human exfoliated deciduous teeth. They were origi-
nally identified as a population of extensively prolifer-
ative clonogenic cells, and can differentiate plastically into 
neuronal cells, adipocytes and odontoblasts. In addi-
tion, SHEDs show higher proliferation rates than DPSCs, 
and can form significant amounts of alveolar and oro-
facial bone for tissue regeneration.4,11

2.2.  PDLSCs

Periodontal disease is prevalent in the adult Taiwanese 
population.27 As periodontal tissues are able to regen-
erate after mild trauma, researchers in the early 1970s 
postulated that PDLSCs might play an important role 
in periodontal repair.12 PDLSCs were first isolated by 
Seo et al, and were found to be capable of differentiat-
ing into cementoblast-like cells, adipocytes and collagen-
forming cells.13 Cell-surface markers of PDLSCs include 
Stro-1 and CD146/Muc18.28 Moreover, PDLSCs have been 
used to generate a root/periodontal complex to sup-
port normal tooth function in a mini-pig animal model.14 
Isolation of PDLSCs from rats and sheep was also  
recently reported.15,16

2.3.  DFSCs

Dental follicles comprise the neural crest, which is derived 
from ectomesenchymal tissue surrounding the devel-
oping tooth germ.17 Human dental follicles can be iso-
lated after wisdom tooth extraction, and they play an 
important role in tooth eruption by regulating osteoclas-
togenesis and osteogenesis.17,29–31 After tooth erup-
tion, the dental follicle differentiates into cells of the 
periodontium, including alveolar osteoblasts, the PDL, 
fibroblasts and cementoblasts.32 The pluripotency of 
DFSCs has also been demonstrated. For example, the 
neuronal-differentiation ability of DFSCs was docu-
mented using the neural progenitor cell markers Notch-1 
and Nestin.33 Meanwhile, the adipocyte differentiation 
capability of DFSCs was demonstrated by cultivating 
dental follicle cells with an adipogenesis medium.18 These 
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observations suggest the presence of pluripotent SCs 
in human dental follicles. In addition to human wisdom 
teeth, SCs have been isolated from mouse or bovine 
dental follicles.19,34

2.4. Dental epithelial SCs

Tooth enamel, the most mineralized tissue of the body, 
is first formed in the crown stage of dental develop-
ment.35 Before the tooth erupts into the mouth, the 
ameloblasts are broken down. Consequently, human 
enamel, unlike continuously growing mouse incisors 
and some mammalian molars, is unable to regenerate 
itself.36–38 Dental epithelial SCs in the mouse cervical 
loop form a unique structure, the apical bud.39 The api-
cal bud is a condensed SC compartment responsible 
for replenishing the growing dentition when it inter-
acts with mesenchymal cells.20,21,40

3.   Tooth-banking: A Preliminary Step for 
Future Tissue Regeneration

Extracted teeth are traditionally thought to be medical 
waste. Historically, the therapeutic potential of dental 
SCs was not well understood, and there were no appro-
priate storage methods for potential donor teeth or SCs. 
Many types of dental SCs have now been identified 
from human teeth and surrounding tissues. Unlike em-
bryonic SCs, which involve the destruction of human em-
bryos, dental SCs are accessible and available and, most 
importantly, there are few if any ethical considerations.

The potential roles of dental-derived SCs in regen-
erative medicine are summarized in Table 1.4,9–23 With 
advances in tissue engineering, dental SCs have shown 
their potential in regenerating odontoblasts,41 dentin/
pulp-like structure, and dentin.42 Furthermore, dental 
SCs can differentiate into adipocytes10 and neurons,43 
and promote the proliferation and differentiation of 
endogenous neural cells.44 It is also possible that myo-
cardial infarction45 and liver dysfunction46 could be 
treated with dental SCs in the near future. Thus, the 
therapeutic capability and clinical benefits of dental 
SCs are not limited to dental use but can also be used 
for regenerative medicine (Table 2).23,45,47–53

Because of the opportunity to preserve dental SCs for 
medical applications, the term “tooth bank” was first 
raised in 1966.54 Several attempts to preserve dental SCs 
have also been reported by other groups (Table 3).6,47,54–56 
However, the absence of appropriate preservation meth-
ods for teeth and/or dental SCs remains a significant 
limitation.

With the rapid development of advanced cryo-
preservation technology, the first commercial tooth 
bank was established as a venture company at National 
Hiroshima University in Japan in 2004.6 By systematic 
organization, an increasing number of teeth have been 
cryopreserved for future generative medicine.57

3.1.  Tooth cryopreservation and tooth banking

“Cryo” means cold in Greek, and cryopreservation is a 
process in which cells or whole tissues are preserved 
by cooling to subzero temperatures, typically –196°C. 

Table 1 Dental stem cells

Tooth type
 Dental

 Primary teeth 
Permanent teeth

 germ    Wisdom teeth

Tooth eruption 0–6 mo 6–13 yr  > 6 yr  16–24 yr
stage

Dental tissue Follicle Pulp Pulp Pulp Periodontal Pulp Follicle Apical 
     ligament   papilla

Stem cell type DFSC Dental epithelial SHED DPSC PDLSC Dental epithelial DFSC SCAP 
  stem cell-like cells    stem cell-like cells

Multipotentiality
 Osteogenic ND ND + + + ND
 Odontogenic ND ND    ND + +
 Cementogenic ND ND   + ND + +
 Dentinogenic ND ND + +  ND
 Adipogenic ND ND + + + ND + +
 Chondrogenic ND ND + + + ND + +
 Myogenic ND ND + + + ND + +
 Neurogenic ND ND + + + ND ND ND
 Reference  20, 21, 22 9, 11 4, 9, 10 12–16  17–19 23

DFSC = dental follicle stem cells; SHED = stem cells from human exfoliated deciduous teeth; DPSC = dental pulp stem cells in human permanent 
teeth; PDLSC = periodontal ligament stem cells; SCAP = stem cells from apical papilla; ND = not determined in humans.
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In reproductive medicine, cryopreservation plays a very 
important role in cell and tissue preservation. For ex-
ample, in 1949, Polge et al reported the successful cryo-
preservation of sperm using glycerol58 and the first 
human artificial insemination with frozen sperm was 
reported in 1953.59 Using glycerol as a cryoprotectant, 
Smith’s group successfully preserved erythrocytes.60 In 
1963, Voronoi et al used a freeze-dry technique to pre-
serve skin.61 In a further advance, in 1985, mouse em-
bryos were preserved with ice-free cryopreservation at 
-196°C.62 In 1999, Kuleshova et al successfully used a 
vitrification method to preserve human oocytes.63 Cell 
and tissue banking is now well developed.64 However, the 
possibility of organ cryopreservation, including teeth, 
is still under investigation.

The formation of ice nucleation and the growth of a 
crystal structure are the main limitations of traditional 
cell/tissue preservation because these processes cause 
cell death. Accordingly, vitrification offers a better method 
of preserving tissues. Vitrification converts a material 
into a glasslike amorphous solid without crystalline struc-
ture. For this reason, it can protect cells and tissues 
from dying during cryopreservation. There are three crit-
ical factors that affect vitrification.65 (1) Cooling and 
thawing rates: two cooling rates are reported when freez-
ing. One is the conventional slow freezing method; the 
other is vitrification with an ultra high freezing rate. For 
the thawing rate, a rapid warming method is recom-
mended.66 As heat is transferred from the external envi-
ronment inwards when thawing, a slow warming rate 
causes the outside part to defrost first, but the central 
part is still cold enough to freeze the outside part 
again. This is likely to damage the cell. Therefore, rapid 
cooling and thawing rates are highly recommended. (2) 

Concentration of the cryoprotectant: the chemical tox-
icity and potential for osmotic injury by the cryopro-
tectant are very important for cell viability.67 However, 
vitrification requires a high concentration of the cryo-
protectant, which is a concern when preserving func-
tional cells and tissues. (3) Sample size and carrier 
systems: reducing the sample and carrier sizes allow 
higher cooling and thawing rates.

Since the limitations of cryopreservation and au-
toreplantation will eventually result in root canal therapy, 
it is reasonable that those multipotent DPSCs should 
also be preserved before pulp extirpation. Along with a 
greater focus on studying dental pulp SCs, tooth bank-
ing should be considered as a major source of dental 
SCs for now.68,69

The CAS cryopreservation method using a pro-
grammed freezer with a slight magnetic field was es-
tablished by Masato et al at Hiroshima University, Japan. 
It was originally designed to preserve dental PDLSCs 
for autotransplantation.6 More recently, Price and 
Cserepfalvi70 have used the CAS and claimed to have 
preserved pulp viability and successfully homotrans-
planted frozen teeth. However, different opinions [de-
scribe what the different opinions were. You mean 
other researchers tried this technique but failed?] 
were reported, which suggested that further endodon-
tic treatment is still needed after autotransplantation.71 
Thus, the impacts of CAS on the cryopreservation of 
teeth, dental pulp tissues, and DPSCs remain unclear.72

In addition to the activities at Hiroshima University, 
the sister school, Taipei Medical University (TMU) has 
recently completed a cooperative system and estab-
lished a second tooth bank in 2008 (the TMU Tooth 
Bank).47 After consecutive experimental studies using 
the CAS, the TMU Tooth Bank has successfully ex-
panded from cryopreservation for autotransplantation 
to long-term preservation of dental SCs.48 Now, pa-
tients who store teeth in the TMU Tooth Bank will have 
teeth for autotransplantation and also for SC isolation 
from thawed dental pulp tissue.

4.  Perspectives

In terms of regenerative dentistry, it is recommended 
that dentists repair an edentulous area of a patient by 
regenerating or replacing new teeth.50 Extending the 
dental oriented applications to other areas of medicine 
is the main reason for the popularity of research on SC 
therapy in recent years.73 However, the potential treat-
ments still need to be supported by in vitro and in vivo 
research. Therefore, alternative approaches for regen-
erative dentistry to repair an edentulous area with the 
patients’ own teeth, so-called autotransplantation, 
should be considered as a treatment priority (Table 
2).23,45,47–53 It is also important to include tooth banking 
for dental SC preservation as a preventive treatment plan. 

Table 2 Benefits of dental stem cells

A. Few ethical concerns

B. Autograft
1. Increasing the success rate of tooth  

auto-transplantation47,48

2. Better proliferation and immunoregulation than  
bone marrow-derived MSCs49

C. Dental stem cell-based tissue engineering
1. Oral medicine 

Tooth regeneration50

Pulp/dentin regeneration23

Periodontal ligament regeneration51

2. Other medical application 
Bone formation52

Stroke therapy53

Heart disease45

D. General benefits
1. Efficient and easy to access source of MSCs
2. Potential for commercial banking

MSCs = mesenchymal stem cells.



Dental stem cells and tooth banking 115

Table 3 Tooth banking methods

Location Indication 
Cryopreservation Tooth-derived Tooth

  method stem cell preserved

United States54 Tissue culture Solution: – –
 Autotransplantation  Saline/antibiotic/glycerol 
  Control temperature:
   -20°C for 25 min
   Dry ice and alcohol bath for 15 min to reach -80°C
  Storage temperature: -80°C

Denmark55 Autotransplantation Solution: – +
 Replantation  DMEM culture medium 
   10% human serum 
   10% DMSO 
  Control temperature:  
   1.2°C/min to -40°C
   6°C/min to -100°C
  Storage temperature: -196°C (LN)

Korea56 PDL cell viability Solution: – –
   DMEM:F-12 = 3:1
   10% FBS 
   10% DMSO 
  Control temperature: -[NO VALUE?]
  Storage temperature: -196°C (LN)

Japan6 PDL cell viability Solution: – +
   BAMBANKER 2 
   10% DMSO 
  Control temperature:
   Programmable freezer (ABI Corp. Ltd. 
    [CITY, STATE, COUNTRY?])
   75 mA electric current to generate a magnetic field 
   -5°C for 15 min
   0.5°C/min to -30°C
  Storage temperature: -150°C

Taiwan47 Autotransplantation Solution: + +
 DPSC isolation  BAMBANKER 2 
 PDLSC isolation  10 % DMSO 
  Control temperature: 
   Programmable freezer (ABI Corp. Ltd.) 
   75 mA electric current to generate a magnetic field 
   -5°C for 15 min
   0.5°C/min to -30°C
  Storage temperature: -150°C

DMEM = Dulbecco’s modified Eagle Medium; DMSO = dimethyl sulfoxide; LN = [WHAT DOES “LN” STAND FOR?]; PDL = periodontal ligament; 
FBS = [FETAL BOVINE SERUM?]; DPSC = dental pulp stem cells; PDLSC = periodontal ligament stem cells.

It is highly likely that tooth banking will be the future 
of the SC era.
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